Multivariate Generalization of the Confluent Hypergeometric Function Kind 1 Distribution

نویسندگان

  • Daya K. Nagar
  • Fabio Humberto Sepúlveda-Murillo
چکیده

The confluent hypergeometric function kind 1 distribution with the probability density function pdf proportional to x −11F1 α; β;−x , x > 0 occurs as the distribution of the ratio of independent gamma and beta variables. In this article, a multivariate generalization of this distribution is defined and derived. Several pertinent properties of this multivariate distribution are discussed that shed some light on the nature of the distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properties of the Bivariate Confluent Hypergeometric Function Kind 1 Distribution

The bivariate confluent hypergeometric function kind 1 distribution is defined by the probability density function proportional to x1 1 x2 2 1 F1(α; β; −x1 − x2). In this article, we study several properties of this distribution and derive density functions of X1/X2, X1/(X1 + X2), X1 + X2 and 2 √ X1X2. The density function of 2 √ X1X2 is represented in terms of modified Bessel function of the s...

متن کامل

A New Generalization of Extended Beta and Hypergeometric Functions

Abstract: A new generalization of extended beta function and its various properties, integral representations and distribution are given in this paper. In addition, we establish the generalization of extended hypergeometric and confluent hypergeometric functions using the newly extended beta function. Some properties of these extended and confluent hypergeometric functions such as integral repr...

متن کامل

Matrix-variate Gauss Hypergeometric Distribution

In this paper, we propose a matrix-variate generalization of the Gauss hypergeometric distribution and study several of its properties. We also derive probability density functions of the product of two independent random matrices when one of them is Gauss hypergeometric. These densities are expressed in terms of Appell’s first hypergeometric function F1 and Humbert’s confluent hypergeometric f...

متن کامل

Noncentral Generalized Multivariate Beta Type Ii Distribution

• The distribution of the variables that originates from monitoring the variance when the mean encountered a sustained shift is considered — specifically for the case when measurements from each sample are independent and identically distributed normal random variables. It is shown that the solution to this problem involves a sequence of dependent random variables that are constructed from inde...

متن کامل

Multivariate Generalization of the Gauss Hypergeometric Distribution

The Gauss hypergeometric distribution with the density proportional to xα−1 (1− x)β−1 (1 + ξx)−γ , 0 < x < 1 arises in connection with the priori distribution of the parameter ρ (0 < ρ < 1) representing traffic intensity in a M/M/1 queue system. In this article, we define and study a multivariate generalization of this distribution and derive some of its properties like marginal densities, join...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008